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LBSIRICT

Characteristlic methods for nonstationary flows have been
published only for the special case of the ilsentroplc flow up
until the present, although they are appliceble in varlous
places to more difficult questions, too. The present report -
derives the characteristic method for the flows which depend
only on the position coordinates and the time. At the same time
‘the treatment of compression shocks ie showm. To simplify the
application numerous orxamplee are worked oub.

*"Nichtstationfre Gasstrimungen in dimnen Rohren verénderlichen
Querschnitts.” Zentrale fiir wlssenschaftliches Berichtswesen der
Tuftfahrtforschung des Generalluftzeugmeisters (ZWB) Berlin-Adlershof,
Forschungsberiocht Nrs 174k, Brawnschwelg, Oct. 22, 1942
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1. INTRODUCTION

In papers by ¥. Schultz-Grunow and R. Sa.uerl methods have
been developed recently for completely solving the problem of
nonstationary isentropic gas flows in a pipe of constant croas
section. An expanded view of the problem is the basis for the
present report. Flows are-cansidered, which likewise depend only
on the position coordinate; howsver, the cross sectlon.of the tube
need no longer be constant and the entropy may vary from particle to
particle. The method of solution applied here has been discovered
almost simultaneously in several places, by Adam Schmidt, W, DSring,
and F. Pfeiffer, among others.

The application of the characteristic method is possible
without & previous substantial knowledge of mathematics. Corre—
spondingly, if a derivation was desired too, ome could be had
which 414 not mseke any special mathematical demands on the reader.
As a model, the Busemann derivation of the characteristic method -

for two—dimensional stationary gas flows might possibly doa. It is
actually possible to epply this derivation immedlately to the

‘schultz-Grunow, F.: Nichtstationfire eindimsnsionele Gas-
bewegung. Forschung auf dem Gebilet des Ingenieurwesens Bd. 13’
(1942) pp. 125 to 13k. Saver, R.: Charakteristikenverfahren fior die
eindimensionale instationire Gesstrémung, Ingenieur-Archiv,

XIIT Vol. (19L42) pp. 79 to 89. Vorbereitende Untersuchungen sowie
Anwendungen finden sich in den Arbeiten von H. Pfriem. Zur Theorie
ebener Druckwellen mit steiler Front Akustische Zeitschrift

Jehrg. 6 (1941) part 4. — Die ebene ungedsmpfte Druckwelle grosser
Schwingungsweite, Forschung Vol. 12 (19%) pp. 51 to 6k -
Reflexionsgesetze flir ebene Druckwellen grosser Schwingungsweite,
Forschung Vol. 12 (1941) pp. 244 to 256 — Zur gegenseitigen
Uberlagerung ungedempfter sbener Gasswellen grosser Schwingungswelte,
Akustlsche Zeltschrift Jahrg. 7 (19142) part 2 — Zur Frage der
oberen Grenze von Geschossgeschwindigkeéiten Zeitschrift f. techn.
Physik 22 (19%1) pp. 255 to 260. 'Eine weitere Anwendung findet
sich bel G. Damkohler und A. Schmidt, Gasdynemische Beitrége zur
Auswertung von Flammenversuchen in Rohrstrecken., Zeitschrift

fiir Blektrotechnik Vol. 47 (1941) pp. 547 to 567.

aBusema.nn, 4.:; Beiltrag Gasiynamik in Handbuch der Experimental-
physik (Wien-Harms) Bd. 4%, Teil 1, p. L2l aend adjoining pages.
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isentropic nonstationary flow in = vpipe of constant cross section
and from this by means of some supplementary physical concepts
succeed In getting a treatment of flows in & tube of variable cross
section; this is the course vhich had been taken, originally. In
comparison to the mathematical theory of characteristics, howsver,
these considerations operate with a lack of clarity sufficlent so
that the mathematicel theory - Tor the engineer too - can be
represented as the best approach to the characteristics method.

Considerations necessary for the present problem are now
brought forward from the characteristics theory”. As a result,
equations for the directions of the characteristice as well as
conditions which must be satisfled along the characteristics ars
obtained. Proceeding from these relations, the next sectioms
develop the actual method of computetion. Next, the characteristics
method for the case which is familier by now, that of isentropic
flows In & pipe of constant cross section,is deduced again end
the trensformations eppearing there are used +o simplify the
computation in complicaeted ceses, too. Since this is not always
possible, the most general form of the characteristics method is
shown in a later section. Aftsr this, the formulas obtailned for
the special case of an 1deal gas with constant specific heat are
simplified end the consideration of boundary conditions explained.
The remaining sections deal with calculation of compression shocks;
the known relations which connect the phess beforc and bshind a
compreseion shock with one another are set forth in & convenient’
form for the present problems and with that the calculation of a
compression shock in e flow 1s carried out.

The theory is 1llustrated with suitable examples treated in
detail.. In that regard, it seemsd adventagsous to avoid definite
problems of technical interest, in doing so gaining the possibility
of working out examples umder very general assumptions without
excessive effort. It 1s hoped that, neverthsless, the applicetion
of the method to physical problems offers no additional difficulties
worth mentlioning inasmuch as the earlier publications contain such
applications. The author oxpresses his thanks to Dr. Hens Lehmann
for working out the sxamples.

8Cc:m.paz'e Courant-Hilbert, "Methoden der mathematischen Physik II",
P 291, Guderley follows the representation given by H. Seifert at the
seme institute for Ges Dynamics in lectures.
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2. BASIC EQUATICNS

Consilder nonstationary, perfect ges flows in a plpe with a
crose-section that varies in space end time® in the neighborhood
of the flow tube; that is, it is assumed that the velocity amd
the phase over a cross section of the plpe may be comsldered as
sufficiently constant. In general, this essumption is Justifisble
only if the thickness of the tube, relative to its length, changes
slovwly enough. Only for flows which heve as surfaces of constent
Thase parsllel plenes, coaxial cylinders or concentric spheres
need this limitation be ignored. These flows with pleme, cylindrical,
or spherical wave propagation are included as specilal cases In the
pressnt problem.

To stress the reletionship to stationary two~diuwensional flows,
let the exis of the pipe be verticel, the position coordinate be y,
the time be + and plotted horizontally In this yt-dlegrem the
flows ere investigated. (Compare fig. 1.)

Let

P preasure .
8 entropy per wmit mess

p density

v veloclty

F = F(yt) the cross section of the pipe, let F be given

In a region free of compression shocks, the flow 1s described by

the dependency of the density on pressure and entropy, the Newtonian
principle, the equation of continulty and the statement that the
entropy of a pgrticle is preserved, as follows:

p = p(s,p) B (1)
i oY . 9v _
S Sy + v Sy + St 0] (2)
2., m - |
S pa *§ e + p 9IF at 0 (3)
g ®

iﬂProblems with ‘time veriations in the cross~sectionel ares
are rare; they were included, since they can be handled without
additional difficulty.
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In this the derivatives of p should be replaced by the derivatives
of p and s, for this purpose

dp

1
Sp = ;51 (5)

is introduced. Therefore, instead of equation (3)

7 3 Ppd, w,1d¢, %k, Ak A _,
aS§+vasay+°§y'+aeat+§§at+pvay"p%t (32)

is obtained. .

3. FROM THE THEORY OF CHARACTERISTICS

In regard to the systsm of equations (2), (3a}, and (L), the
femiliar question is raised from the theory of ~haracteristics. In
a region of the yt-plane let the solution of this system of
equations and its derivations be finite throughout. On a curve C
placed in this renge let the values 'p, v, and s which correspond
to this solution end, thersfore, ths eppropriate derivatives taken
in the direction of C bs ¥mown. 'The gquestion ig asked whether the
derivatives in other directions mey be camnuted with the aid of the
system of differsntial equations, and under what conditions. To
enswar this, a curvilinear coordinate system &,n is introducsi
in which a curve & = constant coincides with C (fig. 1). All the
derivatives with respect to 7 along this curve & .= comstant are
glven, .thé derivatives with respect to & are sought. This trans-
formation 1s carried out and terms ars arranged sc that the unknown
derivatives with respect to & are on the left and tnly known
quantities are on the right. That is

E &y,t)
n (Y: t)

1.

o Bl
1% e

4

Qi
¥

<
QLAY

<=

+

Lo
e
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With this form (2), (3(a)), =nd (%) are obtained

. ~
21, é_(éééé _mid af .,
o p oy JE dy ot on p 9y on\ By Bt
2 L L3 a’; 3s ap( 3% , oF)
3% &2 By T, SE, Y TSt
- égl aﬂ_,_éﬂ_ __av on  ds van 371 dp v BZnF_p BZnF>(6)
TR\ 8 %) oy o % 3t/3s 7T % TP TS
%/, 28, aé) 2af 2 2
a§ ¥ ot} e\ dy ot J
A linéar system of equatlions is obtained for the unknowns %g, %ﬁ%,
and %%; the unknowns, themselves, are obteined by Cramer's rule as

the quotient of two determinents. The determinant In the denominator
1s the same for all uwnknowns. It elweys glves & single-valued
solution for the system of equations, if the determinant in the
denominator is different from O. In the other case with a determinent
in the denominator that venishes, 1t is & necesgsary condition for the
exlstence of solutione that remain finilte +that the determinants in
the numerator also venish. In thls case, however, the solution of
the system of equations is only defined over any portion of the
solution of the homogenous system. In applicatlon to the system of
equations (6) eignifies the following: The dsterminent in the
denominator is formed from the ccefficients of the unknowns.
Consldering a fixed point on C, at which bp, end 8__ars

known by assumption, the coefficients depend on é§ angd _é that

is the direction of C. If C 18 so dirscted that the determinant

In the denominator does not veanish enywhers, the g% etc. are
S
computable as single valued.

Of greater interesit for our considerations e the other case,
namely, that the determinant in the denominator is zero at every
point of C. Such a curve ls termed a characteristic. Because of
the assumption of finits derivetives the determinents in the
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numerator also vanish. Relations are obtained thereby, in which the
right side of (6) and, therefore, the derivatives of p, v, and s
along C appear as essential ingredients. These relations represent
the starting point of the graphical numerical method of solution.

Since the solutions of & linear system of equations are no
longer single valued for vanishing numerator and dencminator
determinents, the pursuit of a given solutlon of a characteristic
is possible in various ways. These different possibilities actually
appeear on chenging the initial and boundary conditions.

L. THE DIRECTICNS OF THE CHARACTERISTICS

To £ind the directicms for which the curve & = constant is a

characteristic, the determinent in the denominator must be set equal
to zero in the solutions of the system of equations (6).

1 a§+a‘s’, o
o 3y N3
L (o222 o 2oy 2+ 22} -
;E(v y +at) ° ¥ 'BSG dy " 5%
X, 95
° ° Q’ay‘“at)
This glves _
AN A ST (- o
From this are obtained the canditions
d& . dE '
Vyy"‘&-—g (1)

or

Cr9FEe (Ba)
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or

(v - a) g% + g% =0 (8b)

The slope -,of any curve € = constant is 'given by -

3

&y 9%

cat g
=

From (7) and (8), together with this, the slopes of the cherac-
terlstics are o . S .

%F v (9)
or '
& =v+a ' (10a)
at - :
or
& .v.a (16b)
at _

The characteristics defined by (9) are path-time curves for the
individual gas perticle; they might be termed life lines of the
particles. According to (10), veloclitles are dstermined from the
slope of the other characteristics, which differ from the veloclty
of the perticles by ¥a. For stationery flows tho Mach waves
correspond to these last characteristics; this designation will be
adopted. Therefore, let Mach waves of the first femily be those
which spread out with the velocity v + a and Mach waves of the
second femlly be associated with the velocity v - a.

5, THE CONSISTENCY CCNDITIONS ON THE CHARACTERISTICS

As shown In section 3, along the characteristics, certaln
conditions must be compllied with by the derivatives which result
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from the venishing of the determinent in the numerator. These
conditions are called consistency conditions, for p, v, and s
are subject to them, if the derivatives with respect to & are

to remain finite. If the right side of (6) is demignated R,, Rp,

and Rq 1in sequence, then the following is obtained for the
detera t in the numerator of the quotient for @R,:

2, 22

Rl 1ar.a.;.).r.+5.E 0
[ ar g

R & 3 (v ad, 8%

> = AN B
35, 3&)

3 ° (ﬁja?"a'z});

This determinent must vanish to give ths directions of the charac-
teristics. Substituting (7) gives

Rl 0 0
dy 0{=0
R 0 0
3

According to this the determinent (11} vanishes by itself. With
' (8a), that is, for a Mach wave 1

' X
" 7 0
35 3 o 281 .
32 | Qg—y _sa,g._.y 0
Lo O
.R3 0 aa?

is obtalned, or
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N2 L =
(g%_) [-pa.’Rl - &R, + %;aaQR3 =0

In thils, g%. is certainly different from zsro, as long ag8 v &and a

are finite and gred & # 0. As the condition for <he Mach wave 1 is
obtained : :

-0 - &Ry + & LRy =0 (12a)

The consistency conditions for the Mach waves 2 1g, if a 1is
replaced by -a

-oR, + eRp - & 3533 -0 (12b)

A condition for the 1ifs line 1g obtalned 1f the vanishing of the
determinant in the numerator in the yuotient for gg to be got
=t

from (6) requires

138 (a§+a§\
=2 R
o dy N7 5’3/ 1
1 A& 3¢ & _
0 _ 0] ' Ra

For the Mach wave this equation is satisfied by 1tself, the condition
for the 1life line is

Ry = 0 (13)

The determinent in the numerator of g% could be investigated, toos

hnwever, this would not give any new c&nsistancy conditione.
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The values of Ri, Bo, &and R3 are still to be put in.
From (12a),

'_1_3 o 3 av.f—a i an | _ . MoF _ . dinF
-aST?Lé?(”a“at]”ﬁ'LB%(”a)+5'1%_§’ Y SNy T 2 5t

is obtained. The direction %.Z_ along a Mach wave 1 is given by
+

~

(108); on that account

an _ an _on an
dt‘S;jr'%%"Lﬁ'%(vJ'a)J'S{

is valid for it. With that the consistency condition for the Mach
wave 1 can be written in the form

- ‘ \
1 dp ., dv _ _ dwF , dulr}
ap dt & at a<v =Sy st (1ke)

The consistency condition for a Mach wave 2 1s obtained, by
pubstituting -a for =a

1dp &y _ gf v QWP 4 QUF 14D
ap 4t 4t ( Ey 3t ( )
From (13) for a 1ife line 1is obtained
ds
5n =0
This may be Integrated immedlately
8 = constent (15)

Naturally this constant will differ from particle to particle, in
general . .
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6. FLOWS WITH CONSTANT ENTROPY AND UNIFORM PIPE CROSS SECTION

Equations (14), (15), (9), and (10) Just obtained are certainly
useful, fundementally, as & starting point of a characterlstlcs
method ~ in fact, there are ®xamples, where 1t is necessary to revert
-t them (comnare section 11); in most cases, however, there are
gtill other transformations suiteble. The dirsction in which to
proceed for these 1s obtalned if an attempt is made to derive the
characteristic method for lsentropic flows in a pipe of unifiorm
cross sectlon from equatioms (14) and (15) vroesibly in the form
applied by Schultz-Grunow. To emphasize the fundemental ideas, no
esgunptions of any kind are made therein of the characteristics of
the flow medium.

On eccount of the hypothesis of constant entropy, equation (15)
satisfies itself. ITn equations (14) the right sides are omitted
since it concerns a tube of wniform cross8 section. Further, on
account of the hypothesis of comstent entropy the state of the gas
is still dependent ae only one varisbls, perheps the pressure,
or the tempersture; the quantities appearing on the left side
smd a are accordingly functions of this varilaeble. It 1s possible,

thersfore, to consider the expression 8P as a differential. Let
pa

T  tempoerature

1  heat content (enthalpy)
8 cntropy

By the second mein theorem

Td.s:d.i-%d:p

From thils, on account of the hypothesis of constent entropy,

(.,1 o fa
44T
With that, 1t follows thet

o _ 1 fai1)

E)-E- = a \ET'£ ar



NACA ™ No. 1196 13

W(T) = ;_."/n 1 /d‘i) at (17)

18 introduced in which a, 1s the sonic velocity of & comparison

phase which was added to meke W dimensionless. The phese of the
gas may be charascterized by W from W = W(T). It follows that

T = T(W) (18a)

Furthsr, it is valid that' _
p = p(T) = p(W) (18b)
a = a(T) = a(W) etc. (18c)

With the use of W equations (14) appear in the form

a, aw + dv 0 for a Mach wave 1

a, dW - dv =0 for a Méch wave 2
Bringing in

A=W+ (192)

these last relations change to a form which may be integrated. This
gives

A = constent for Mach wave 1 (20=a)

B = constent for Mach wave 2 : (20b)

If the megnitudes of A and p  are known for a point of the yit-diagram,
the veloclty 1is thereby completely defined as woll ss the thermodynamic
phase. It is, to be exact,

YA (21p)
a 2

(0] N
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and on account of equations (18)
(M + u) (222)

a{h + pn) (22p)

P

a

The next sections explaln this traneformation emd the application
of equations (20) to an example of an. ideal gas whose specific heat
is a function of temperature.

T TEERMODYNAMIC RELATTONS FOR AN IDEAL GAS WHOSE SPECIFIC

HEAT IS A FUNCTION OF TEMPERATURE; COMPUTATION OF W

Let
'cp sﬁecific heat at constant pressure
Cy gpecific heat at constant volums
R gas constant.

For an ideal gas
B - RT (23)
P

Accofding to the second main theorem, if p end T are considered
as Independent variasbles

dp - L. dp (24)
Since ds 1s a perfect differential,

(1ai\ /;M__l_)

T OTA\T dp of

Accordingly, substituting p from (23), the following kmown fact'
is obtained

ol
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that is
i = 1(T)
now
i [ oL
= C
D
'\ﬁ o)
therefore
= T
cy cp( )
From (24) as a result
c
ds = 2 ar - R dn.
T P

and from this by integration

s ; 84 =@/

Introducing ' T
| a
4dp R T .
P=o °
-8-8g
T =e
glves
P
— = T
Po 5

15

(25)

(26)

ééha)

(272)

(27p)

(28)

Considering c,(T) as known, p by (28) and p Dby (23),
are given as functions of T eand s; the thermodynemic propertiss

of the medium can be calculated in principal, therefore.
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quantity a is also defined by p end p. The computation of =
is by all meems simpler if cerried out in the following way.

According to (5)
1 _9
Z %

for which the entropy is to be kept constant. For constent entropy
from (2hea) :

T Cp P

by differentiation from (23)

dp _ do _ 4T
P o] T

From the last two relations together with the familiar relation

cP -~ Cy = R
is obtained
o
a(T) = /R pr (29)
¢ cv

The relations discovered up until now dsscribe the properties
of the ges end must always be known; it makes no difference which
variation of the charascteristic method is chosen for the calculation
‘of the flow. In contrast, the Introduction of the functions W, A,
and u serve only as preparation for carrying out of the charac-
teristics method in the form prssented in the preceding section.
Next, to campute W. From {(25) 1t follows

with (26)
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Setting the last eguation as well as (29) into (17) gives

r+u o1 [0 [ |
w=2itp .1 aT - (30)
= ao( TO v RT

For the present case ; 8 = constent = s (28) becomss

Ip aT
R T

|
oy

2(M)=e ~ (28s)

Now the following can be formed '

T = T+ p)
& =a(d + u)
P =P\ +u)

Thess calculations wesre cerrisd out numerically. for carbon
dioxide. The relation between the specific heat and tem'peratu.rc was

taken from Biitte~ with the aid of these values (i - i) /ao ,
afe,, P, end ‘W cean be computed from equatioms (26), (29), (272),
end (30) as functions of the temperature. (See figs. 2(u} and 2(b}.)

Flgure 3 shows a/a P, and T plotted as funcilons of
M+ pu o= 2W. .

8. THE CONSTRUCTICN OF THE FLOW FIELD

The following problem should be dealt with: Along a curve K
of the yt-diagram, which has at the most one point in common with
each characteristic, let p/p, end v/a, be given (fig. 4). The
flow should be constructed for the following times as far as it is
defined by the portion of K given. Therefore, it 1s concerned
here with the computation of the part of the flow dafined by the
initial conditlons which by thz same erguments appear everywhsre .in
the interior, too. Before the comstruction of ths :E‘low can b'= startec

Hutte, 27th editfon, Vol. 1, p. 48, table 5, Berlin 19&1
Wilhelm Ernat und Sohn, publishers.
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the initial values p/po and v/a'o must be expressed in terms of

the verisbles % &and p. Since the entropy was asgumed constant,
p/p end P coincide. With the aid of the relation presented in

figure 3, between P emd A + p and equation {22b), A and p
may be ascertained without difficulties. Figure 4 shows un the right,
the yt- diagrangon the left, the dlagram of the assumed values p/po

and v/ao as wsll as those of the computedl quantities A and p as .
functions of ¥,

Proceeding from the individuel points of K if the network of
Mach waves had been brought in, the phase at each lattice point
wonld be determined thereby; according to (20) A\ is constant along
Mach wave 1, u along Mach wave 2, and on that account, equal to
the values at those veinte of X from which the Mach waves spread
out. By (21b) and (22) the phase is given by A and . To be
able o draw the netwvork of Mach vaves, -nly their directions are
8111l needmd. These ere given at the lattice points by (10),

a/a, 1s & function of X\ +pu in figurs 3, v/ay 1s computed

as &_é_&.

The direction for the portion of & Mach wave between two lattice
points is approximated as the average value of the corresponding
directions at the lattice points.

The construction becomes especially simple if the Mach waves
are drawn for equidistent values of A end p. The directions
of +the Mach waves sppsaring can be computed beforehand and possibly
prepared in the form of table I. The interval between adjacent
values of A or p wase selected as 0.1, the slze of the interval
depsnds on the accuracy desired. In the table the upper column
headlngs and signs refer to Mach wave 1, the lower to Mach wave 2.
The numbers entered in the tablas represent the average values for
(v +a)/a, and (v - a)/a,. For Mach wave 1 for whichk A = 0.3
end which leads from a point with u = 0.2 %o a point with p = 0.1,
in the column with the heading X =0 3 the value is to be taken
from the row u = 1.5, that is, (v + a)/a, = 1.103.

In the flow dlegram the veluse of A valid there are entered
to the left of the lattice point and the values of ik to the
right. To determine, for example, the positlon of 'C from the
points A and B since the phase of C 1is given beforehand by
A=1.1 and u = 0.5 the average directlions of the Mach waves
(v +a)fa, = 1.422, (v - d)/a = -0.778 can be taken from table I

- .end dravn in the yt-@iagram. The auxlliary dlagram on the left in

.l A
2
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figure 4 cen be used for this. There the direction of a Mach wave
for vhich (v + a)/a, = 0.8 is drewn in. Similar diagrams can

be used as alds for the following exauples, too. The portions of

the Mach vave going out from K really require a special computation
gince the averags values of A or p for them do not agree, in
general, with the values of table I. The small deviation was
tolerable, however.

9. FLOWS WITH CONSTANT ENTROPY IN A PIPE OF VARIABLE CROSS SECTION

If the cross section of the pipe le not constant, the right side
of equations (14) from which it is neceseary to start out, here too,
ars preserved. With that, there is the possibility of undertaking
that integration along the Mach waves which led to equations (20).
Nevertheless, the introduction of A end p still remaing useful.
Setting

2| v _.SEM + L OUE) _ 1
8o (\ao Yy &, of ) ’ i (31)
then
a | -
At = 'aOM (32a)

is obtained as the consistency condition Tor Mach wave 1 and

du __ 4
i a M (32p)

f~r Mach wvave 2.

The consistency conditions in “he form of (32) contain at any
given time iths differential of only ons of the unknown quentitiles
A or u vhile the differentials of both p amd v eppear in (1h)
alrsady. This implies an appreciable lmprovement in the numerical
calculation.

The construction of the flow rests an the fact that equations (32)
are considered different equations. Let G be the value which a

quantity G assumes at the point A, AGpy the difference Gg. - Gy
and GmBA an average valus of G ‘teken between A and B.
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Applying squations (32) to compute from two known polnts A and B
the phese at a third, C, which 1s on the same Mach wave, in the
form

Ag = day =D g = Mppets Otgy L
(33)
Mg = M = Shgp = Mupeso Atca J

For the determination of the flow Ay and pp have to be computed
by means of these last equations and, at the same time, the position
ascertained of the points sought in the yt-diagram by the use of
equations (10). The calculatlion process might bs explained by an
example .

The flow is considered as given along & curve of the yt-diagram
and, adnittedly by A and p (fig. 5, table II). In addition, the
pine cross section must be s mown fwmction of y and +. For that
it 18 only necessary to require +that F can be differentiated
vith resvect to position and time, a premise which is always fulfilled
in precitice. For this sxample F is taken in the form

F=Fy%
From (31) for M

M =.§.f’_y_a+_l__'
8y &, Y G

\%o 7 &t

o)
The positions y =0 and t =0 for which M goss to infinity do
not belong to this region of flow where such singularities appear
(for example at the center of spherical waves); it 1s necessary to
make speclal investigations which oannot be entered into in the
present repori’.

The best way to follow the calculation 1s by means of the
systematic caloulation in teble II, To facilitate comparison with
the desoription the columns are mmbered. The first column contains
the designation of the point which is to be computed, the second
column gives ‘the known point which, in common with the point to be
ocmputed, 1s on Mach wave l., Column 3 conteins the corresponding

"Compare G. Guderley. "Starke kugelige oder zylindrische
Verdichtungsstdese in der Néhe des Kugelmittelpunktes oder der
Zylinderachse." TIuftfahrtforschung, Bd. 19 (1942),pp.302-312. Thits
concerns ltself with a complicated special case of such & singularity,
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point for Mach wave 2. The first five rows reproducs the initial
values 28 well as some further values that hold at the given points
which are necessary for & later calculation. The calculation of &
new point is carrisd out in ths form of an iteration method; as

en example the point &4 will be explained. Next, the values for
M, end u) ars estimeted  (colurns I and 5). TIn order not to
use too favorable an estimate, it 1s assumed that Ay = Ay

end ), = p,. The guantity (A + p)), is determined for these
magnitvdes and from that, with the aid of figure 3 (._a_\ and,

a_:
o/l N\
farther on (_‘L\ (colums 6 emnd 8) . With these values (V_i'_é)
8

N o/h %o /4
and (V - a) are computed (columns 9 and 10)+ Now the average
A )
directions for Mach waves 1 and 2 (Y..f..?‘. a.nd.( vy - 9‘)
%o /mi,h ~ %o Jmp,k

are formed (colums 14 end 19) and the Mach waves are plotted on
the yt-diagrem. From this y) eand &gty (colurms 12 and 13) are
obtained. With these values M, (colwm 11) and the average

values M, ; ) and 1\%2 L {(colums 15 and 20) are computed. To
3 b4
continue for Mach waves 1 and 2 Aaoth,l = a.ty - agty .

and Aegty o = agty - eytpy  have to be computed (colums 16 and 21)
P
end cen be substituted in eguations (33). The quentities Al 7
¥

end Au& p @8 well as &), and (colums 17, 18, 22, 23) are
obbainedl If the values A and p calculated in this menmer do
no% §gree well encugh with the original estimate, the calculation
must be repeated in which A and p Just calculated appear in
place of the earlier estimates. Nazturally, the Mach waves must be
plotted over again, too, in the yt-diagrem for this. These figures
only show the final form at any instent. For that reason all the
steps in the iteration method are put in the tebles. A good view
of the results of the calculation as well as Insight Into the
estimates to be carried out by the iteratiom method is obtained, 1f
the flow is followed simultaneously in a Au-dlagram, as well as the
yt-dlagran (fig. 5, right). There the A-axis was selected
slanting up to the right at 45° and the p-axis downward at 45°. With
a sulteble vertical scele X - j, and thersfore v/ao, is obtained
imnediately on & horizontal scale A + 4 or VW and with the use

of unequal distributions a/&o end P and, for isentropic flows

'p/po too. The XA~ end p-axes were inclined 45° to obtain the

quantities of phyeical interest v/a,, a/a,, etc. in a coordinate
systen with the conventlonel arrengement.
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10. FLOW OF AN IDEAT GAS WITH ENTROPY DIFFERENCES

The introduction of A and K with the obJect of cobtaining
equatione in only one unknown, at any time, wilth the iteration
method for the determination of.the flow was possidble up until now

because the expression gﬁ. with constant entropy might have bsen
o}

considered as the differential of a function W independently of
the cheracteristics of the incident ges. Naturally, that is no
longer possible with variable entropy. The computation of the
flow must, in general, therefore, return to (14). The ideal gases
constitute an exception. Hers, as recognized in (30), the fumction

W which essentislly egrees with 42 for comstant entropy ’
. pa
depends on the temperature alone, and no longsr on the entropy.

If the expression 40 is considered, therefore, in the case of
pe :

variabls entropy as dependent on the varisbles T end 8 the

effect of change in entrovy is separated, then the rest’can be
written here as a differential and A and. u can be introduced as
previously. The changs in the entropy along the Mach waves nmust
neturally be regerded separately. This is possibls without especial
difficulties since the entropy is constant along the life lines. The
. trensformations are carried through in the followlng memner. From
the sscond law .

Tdas = a1 - L dp
o)

teking in*o account (26 and (29)

' 'enC c
Zan =81 _pde . /TP Var - /C¥Tgs
ne a a RT- ' ¢y R

Introducing W, X, and p as before, the consistency condlitions
are ob*elned in the form

A o . &y ,owFY: /vT 1 ds I J

i Sl 2 ROUARF Sy 523 g) for Mach wave 1
dt ao< dy ot cy R &g 4% (3ha)

= -8 lvowf ,owF)+ /vT 1 ds (34b) for Mach wave 2
dt 8q oy o9t Cp R a5 dt
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The differentilal guotients ds /dt formed along the Mach waves
interfere: The following trensformations are possible. Analogous
to the flow function of two-dimensional stationery flows, a
function ¥ is iIntroduced, Y is constant along the 1life lines.
This can be achieved by requiring that '

W __F o

‘ g—t _..F.....o o v (355-)
N _F o :
S ¥ b _ (35b)

Along any curve of the yt-dlagrem

ar _ ot 3l at
i §§+§'Edy (36)

Along a 1ife line %% = v therefore

that 1s WV 1s actually, constant along the life line. At each point
of the yt-dilagram ¥ 1tselfl cer te¢ dufinegd %y a line integral that
leads fram & fixed point A at which V' might be zero to B.

B . B
w-zfa\p +axz:dt=/F _F
B x.A(EEdy ot s f"p‘d‘v f;f;vdt (37)

Opo

«

The thysical significance of ¥ can be recognized as follows:
Iet C (fig. 6) be the intersection point of the life line through
A with the line + = constant through B. To begin with, the path
of integration 1s along the life line from A to C and, from
there, out along the line +t = constant to B. Along the life
line AC, YV 1is constent

‘l’cg\l‘rA:O
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along the section CB, dt 18 oqusl to zero, accordiingly

.B

Vo= -
B (J/CFODOdy

From this, 1% is svident that ¥ represents the mess which is
enclosed between the particles at an instant in time for which V¥

1s zero.

The fact that & 18 constant along a life line can te written
with the use of V¥ in the form

s =sl) (38)
For ds/dt then

ds _ ds a¥

dt & %

for which %% is to be taken, Just as ds/dt previously, along

the Mach wave considsered.

From (35) end (10)

é:i’...f.'_.ﬁ’_a : for Mach wave 1
dt FO fo

. F o a for Mach wave 2
dt Fo Py

Substituting these in equations (34), ellowing for (23), (28), and

ds ‘R P 1 dn
.(29) replacing 3 according to {27b) by %Ay and po/po

CV
0
by g &O? "yilelds the fnllowing consistency conditions:
b
gie}
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For Mach wave 1

- a(latn_g_,__l_l_._a___lnﬂ)_:g_F_Pdn
& °| eg\a, oy a, dt CPo F,  av (39a)

For Mach wave 2

8 _ g f.2 (¥ OtoF, 1 OnF), O F par (39b
dt ° ki ag \a, dy . &g ot CPo F, & )

Here P is a function of A +p (fig. 3), F/F, 1s known to be
a function of y end +. From (38) and (27b) it follows that

1 = x(¥)

and from this

dt » Ax (V) = constant for a life line - (k0)
¥y al .

For the sake of compactmess, introducing

Cc

Yo F _ arn
Y=—5%F

'DO (o] 24

Then (39) gnes over into the form

*

A = a (M+N)* (kia) for Mach wave 1
at  ° ‘
d - a (M - N) (L1b) for Mach wave 2

dat

Equations (40) and (b1) supplent the previous consistency conditions
(15) and (14).
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Before starting the characteristic construction, the problem
arises here, too, of computing A eand u, end now Q—T{fﬁ besldes,
&
from the Initial velues. Along & curve K of the yit-diagram let
the veloclity be given by v/ao, the phase of the gas by p/po

and T. From T with the aid of figure 3 A + p i1s obtained,
from v/a,, A - p; with this A end p are known. Since p/po

are given, and P as a function of T is to be gathered from
figure 2, = 18 obtained immediately from (28). As a result of
plotting = against the values of y from the curve X end

differentiating % is obtained. From (36) and (35) together with

! : _
(23) % for the curve K may be computed for the curve X eand,

finally, with that

dn _ dn alr
¥ ~ dy dy

is deternined. In many cases *these computations are superfluous;
if entropy differences arise from compression shocks , ‘the

determination of &%, A and p includes their calculation. The
a N

v
way the computation of flow has to be carried out is shown in
flgure T end table III with points 4, 5, 6 as examples. The
related Au-diagrem is right center. (The points included, in
addition, in the table end the Tigures relate to a later section.)

Along the curve K (points 1-3) A, up, and 4% are assumed as
a
known, in the suxiliery diagram %‘p has been reproduced as a

function of* y. The computation of a new point - take point 4 as
en example - begins, here too, with an estimate of A and p
(teble III, colums 4 and 5). After that, as before, the following

!

are computed (A + p)y; (a/agdys (v/eody ; (va+ a) 3 {I.’LE.} H
o/ \ %o Jy

+ ’ - -
(“‘“"‘"va e) 3 ( va a) ; (columns 6-10, 19 and 24), the position
(o] ml,h_ [s] mz,h

of 4 is indicated in the yt-dlagram and ), and aotl'_, In the
teble (colurms 11 and 12) assumed. The determination of %ﬂfl' with

the aid of the life lines enters in a&s something new. It should be
sufficlent for this to draw in a multitude of 1life lines, simulteneous
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with the construction of the Mach waves and going back over these
to learn the desirsd value % from the auxiliary dlagram. The

Mi~-diagram is useful for a quick determination of the dirsction of

the 1ife lines. The position of the intersection points of the

life lines with the Mach waves may be estimeted there without
difficulty, and then the average velocity learmed. (Compare points 1k
end 15 in the yht- end in the Au-diagram.) After % has besn found
and, in addition, P has been learned from diagram 3 (columms 13

end 14), M, and W) as well as (-M - W), eand (-M +N)), may

be computed (colums 15-18), the avsrage velues (-M - N )ml y and

(-M + N)mo ), for the Mach waves be formed (colunms 20 end é‘j) and
B 2

vwith *he aid of A a t (columns 21 and 26) from equations (L41)

compute AW and Ap eand, ultimately with that A and u.
(Columms 22, 23, 27, and 28.) Where the originel estimates were too
bad, the computation was repeated.

11. THE GENERALIZED FORM OF THE CHARACTERISTICS METHOD

An outline shall be given of how to proceed 1f the simplifications
given above are no longer possible or if the flow 1s so small that
the prepared computations as given at the end of section 7 do not pay.
As ean example, let the computation of the point 4 be cerried through
from the points 1 and 2 of figure 7.(See fig. 8) The quantities

0.425

pl/po NRRI Ty = 1425 vy /o,

Do/Py = 1.866; f, = 1.332; vo/a, = 0.400

correspond to the initial values assumed there. For the medium to

be Investigated o &and a nmnust be given as Punctions of p and =.

In this case P is obtained, first of all, from (£3) and from that:

and figure 2{b), T. Then o/p, end afa_ are obtained with (23)
o

end (29). Honce )

\
ey /a, = 1.021; py/pg = 1375; (Zai-i‘ = L.4L46
. © 1
= Y . . - 8 5 —
ap/a, = 1.037; p2/po = 1.710; ( - .}2 = 0.637
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besides
M, = 17475 M, = 1.4k

can be computed. Here, too, &n estimate is made in computing a new
polnt. For exemple

ﬂl + “2
Pu/Po = Pl/po = l.hh; V,_'_/ao = l/ao = 0.425; T = = 1.266

With this Py = (pu/po J/“k = 1.137 is obtained, whence

TZ]. = .282 S

Continuing further

AY
ah_,/ao = 1.01k4; - ph/po = 1.390; ("h + ah_)/_ao = 1.439

/\vh - au)/&o = -0.589; (v + a)ml,h./ao = 1.443; (v - a)me’h/aoé -0.613

With that the position of point 4 in the yt-diegram may be found,
glving

7, = 14465 a t) =1.258; A(aot)u,l = 0.048; A(aot)lhe = 0.092

and, after further calculation
M)-l- = 1-14-03

The average wvalues are found to be

= 1-0175" Mml,}-l- = l'h39

(F’/DO)ml,u = 1383 (a/aO)ml,u

= ll550; (a/ao) o = 1-026,' Mm.?’l‘_ = ltLI’23
LY . . .

(ore A

\
% m2
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Considering equations (14) as difference equations then®

oo ml ,li- mi yh\‘\po 9

P o} 'a (’9;_,_ p_-,: _/vh vl\' A
(2, Bl 7 oli ) e -

P o, a P o \ /v T
2 (_.. ( ; }-l- 2. aox El_l-_ - _g\ = -a_o(ac)t,+ aotl>Mm2 L
Po%o N O /yp it B/ 1 \Fo "1, \o fo s
PO CVO 2 .
Replacing -2 by 20 from (29) end (23) gives
o
e} Py

c
offo% (%) P Ty TofP (E_ Py
(. ) ( mlll-p +a’o C \;) :)ml,hpo
+ ;3-. 'Mml,h<a0th - aoti)
C C
___/_q) ( 20\ E&_E_:_:Q(Eg‘) (i‘g) f2
T\ m2, & /2y Po 8o CPo O Jme, iy & /2y Po

- T Mp u"a - aot2>

"For ideel gases the firsi tern of the left side of (14) may

be written 1 dinp
k d4dt

separately. To peruit+ the procedure toc be applicable in more general
cases, this simplification is not used here.

a, then o/o does not have to be computed
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Putting In numerical values gives as & result

0.547 ph/p0 + vh_/ao = 1.1430

0.48k% Ph/Po - vh_/ao = 0.3715
p}_l./po = 1470
Vh/ao = 003!4-2

From the velocity computed above vh/a.O end the velocity at

a point 4', estimated for the present, of the commecting line 1.2,
the average direction of the life line passing through bt is obtained-
by an epproximation method. If this is proceeding from 4 backwards,
the more accurate position of L' is obtained. By interpolation

between 1 end 2 7' =m = 1.243 is obtained. Since the values

P
_E, f&, “h do not agree sufficlently well yet witp the originally

P 8
estimated values, the computation must be ropeated with the magnitudes
Just obtained as sterting values. Thisg gives

pllL/p0 = 1.478; vu/ao = 0.3383; T, = 1.243

2. SIMPLIFICATIONS FOR IDEAL GASES WITH CONSTANT SPECIFIC EEATS

Generally the flowing medium is an 1deal gas with constemt
speciflc heat or at least can be considered as such, as an epproxi-
matlion. In such e cese appreclable simplifications are possible.
Tet

k = c:p/cv

then
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From equations (272), (29),.and (30)

—_ . a_—f. — /S Rm e At 2 14
= = /= a_ =,/ kRT W= = — -1
( } Toa, \/TO-’ o =V BTy ; 2 kK - 1\ )

With this, it follows that

M=o f2 1N+ T (k2a)
k-1 aq J &g
“=k?1(£"1)'l (42p)
- a, &,
v and from that
a Lk -1 ' '
. 2 =1+ A+ h2c
ag T( !J) ( )
consegquently,
- . oK (
: k-1 k-1 k24)
P=11+ A+ '
e o) |
The directions of the characteristics are obtained from (9) amnd (10)
in the form :
&z - L=
At -.ao 5 for the life lines

%%m_a {l+k+—}->~ -3——"—1‘-u) Por Mach waves 1

. g.-‘f;. = aG[\-l- IE_E_.J; noF 3_&.1% x) for Mech waves 2
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The consistency conditions for the Mach waves remain unchanged in
the forw (40) end (41). M and N e&re expressed as follows, now,

o X - . - . - i

L y a, St
21
Y N T
Rl e e B

The directions of the characteristics may now be found very
conveniently graphically. A constiuction which is sulteble if the
simmltensous treatment of the flow in & Ap-dlagram is avoided is
the contribution of Adem Schmidt.(Ses £i1g.9.) For the determination
of the direction dy/dt for a life line, two vertical scales at &

dlstence of 1 eapart are used with },2: plotted on the right one

end % on the left one as sbove. A life line for a phase which

is glven by A and u  has the direction of the connecting line
of the points concerned on the function sceles. Similarly, there
-~k

are scales to use for a Mach wave 1, which give u  on the
loft and 1+ S on the right. For Mach vave 2 I_S_E__l "
has been plotted on the left and -1 + 3—1}—15 M on the right. In

figure 9, the direction of Mach waves 1 end the life line is given
for A =11 &and u = 0.6.

If the phases in the course of the comstruction of a Au-diagram
are followed up, the following method—is sulteble (fig. 10, right).
A vertical line is sent through the O-point of the Ap-sysiem and
the poles P1, Py, eand Py are determined, where Py Is on a

level with the origin of the Ap-system and ve-) avay from 1t. Py
end P2 are directly below and above DPr, wvespoctively, end

likewise the distance Y2 from it. To find the direction of the
characterlstics for a glven phase, & horizontal ray and two rayse

slenting upward and downward at an engle arc ten ].‘.._é._l-. are drawn.
These Intersect the vertlcal line through the orilgin of the Ap-systenm
at the polnts Q;, Q, eand Q. The comnecting lines P;Q;,

PoQy, end PpQr ere the directions of Mach waves 1 end 2 and the
life line. In figure 10 the construction for point 4 is carried out.
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This construction is espscilally convenient with a triengle having
an engle erc tan ]E-é'-l. Figure 10 and teble k give an example of

an applicatlion for the same initial values as in figure 7 and with
op/cv = constant = l.4.

13. BOUNDARY CONDITINS

If the flowing gas column 1s not infinite, the variation of
the flow is determined by the phase at the stert, in addition,
also by conditions at ite boundaries. For example, a gas can be
closed off by a piston or rigid wall, flow out into a space with
a glven pressure, or be sucked out of the same. Generally, the
boundary conditions may be formulated so that relations between the
phase magnitudes of the gas and its veloclty along a curve of the
yt~dlagrem are prescribed. The number of conditions ¥hich are -
needed for the boundery curvs corresponds to the number of charac-
teristics which run out froun there into the interior of the flow.
For exemple, the gas flows out of the end of the pipe into a space
with constant pressurs, with v < a, then the line y = constant
is the curve for the pipe for which the boundary conditioms are
given. A family of Mach waves spreads out from it inward, while the
other family and the life lines reach this curve, approaching it
from within. TIn this case the condition cen be prescribed that
the pressure in the exit section be equal to the outsids pressurs.
If the gas is sucked in from outside, Mach waves of the cme family
proceed from the curve of the boundary conditions as well as the
1ife lines. Accordingly, two conditions must be gilven. The onse
etates that the entropy of the entering particle is the same as
the entropy in the outer space, as a second 1t would be required
perhaps that the phase of the ges in the entrance section be related

to the phaess in the outer space through Bernoulli's eguatian®.

© (An exsct formulation is difficult, since the flow at this location
is no longer one-dimensicnal.) If the characteristics of all thres
femilies of a given curve lead out into the interior of the region
to »e computed, there are three conditions to prescribe; this is
the Initial value problem alrsady treated. The other extreme, that
at the boundary of the region of interest, generally, no condition
cen be fulfilled,is physically concelvable, too. For example, if a
gas with v > a flows in a spsce at constent pressure, generally no
characteristic goes inward from the outflow sectiom. .

BCompas:'e Schultz-Grunow, loc. cit.
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Actually here — dlsregarding boundary .conditions ﬁhioh force
compression shocks — no effect on the Tlow veriation in the interior
is possible from outside. T

The treatment of boundary conditions is explained with two
examples which are commnected with the flow in figure 7. The com—
putation 1s entered in table III, as far as possible. The First
example inoludes points 7 to 9 and, admittedly, it has been assumed
that the gas column 1s bovnded by & piston whose 1ife line is
represented in the yt—dlagrem as the curve 3, 7, 9. (Whether it is
practicable to realize such & piston in a tube of variable cross
sectlon is unimportant for carrying out the computation.) The
Mi—diagrem referred to 1s in figuve T, upver right. To begir
with, an estimate is made of the phase at 7 which has been chosen
h7 = h3 = 0,800, Mo = Hg = 0.050. Since the line 3.7 is the life

of & perticle, gﬁ- is already kmown and is ocgual fo (?lﬁ "
' 7 ' : av/ 3

With this the values in colwmns 6-10 and 19 are calculated. As a
result of drawing in the Mach wave 5.7, y7 and egty {columns 11
and. 12) are obtained end besides v7/a, from the direction of the

life line at point 7 which has been reached. (This quantity is

found in column & under the value computed from the iniltial estimates. )
Now the gquantities in ¢olumns 1% to 18 and 20 to 23 may be camputed,
the value v7/ao obteined from the boundary conditions will be used.
With that x7 is already known. The quantity Hep is obtelned from

the relation

J ooA=p
=

Inserting mmbers

0.323 = 1/2. (0,417 - Wrls Mo = —0.229,

Since the first estimate was too poor, the computation must-be
repeated. '

Point & is computed from 6 and 7 by ihe method explained
in seotion 9. From 8, point 9 is obteined in the way jJust described.

This method of calculation is useful for any laws of motion
of the pipe; & special argument is necessary only if a discontinulty
appeers. The dlgcontlmuity in the velooity is to be considered
attained on tramsition of the boundary from a oontimious velocity
variation at very large acceleration. In +the yt—-dlagrem that means
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that the life line of the piston which has a bend at the instent
of the velocity discomtinuity is rounded off immediately. Then the
flow may be drawn accurately Just as previously. To obtain
sufficlent accuracy, enough points must be teken on the rounding off
so that the velocity of the plston does not chenge excessively from
point to point, end at each point a Mach wave of the.first family
mey converge and & Mach wave of the second family may diverge from
there. First of all )\ must be computed for the converging Msch
vave and then from X\ and the velocity at the incident point " u
determined for each Mach wave. If the rounding off becomes smeller
and smellsr, these poilnts on the rounding off draw closer amd
closer. With that the values of A\ approach a single value, which
mey be computed from the field befors the bend. The Much waves 2
spread out in the shape of a fen from the bend and the fan includes
all values of u which lie between the values of p for the
velocity before and after the velocity discomtinuilty. :

For the second example, thers is at the position y = y, an -

open pipe sﬁ&, through which gas is sucked in from outsids and for
which two conditions must be specified along the boundary-condition
curve. The curve is the curve 1, 10, 13 in figure 7. In the outer

space let = = 115 for the entering particle therefore %% = 0.

This is one boundary condition. As the sscond boundary .condition -
there is the reguiremnent that the phase in the inflow section be
related to the phase in the outer space by the Bernoulll equation.
This condition may be satisfisd, already, at point 1, accordingly

i+ V2/2 = il + 'V12/2
or also

2 1, -1 ’ V22
v 1 o 1 1
(Ef) = -—EfE-- * 24\5- = constant,

To determine thess constants from Pigure 3 the temperature T is
taken for (l + u)l from figure 2(a) for’ Tl: {17 - io)/ao

Then
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Since (1 - 10)/30 is a function of""]." and, therefore, of A+,

av l‘—-é--li this boundary condition ca.n be plotted as the curve X
(o}

in the xu-diagram (fi.g T; Lower right). At 'best the computatim
of point 10 beglns anew with an .estimate for N and i 8o that

the boumdery conditions are already gsatisfied (colums 4 and 5).
With this, the quantitigs in columns 6, 7, 8, 10, and 2k are computed
end Mach wave 2 drawn’ in with that. The quantity a ’blo is

obtained in column, 12, the wvalues Y10 = yl and = 0. (Columns 12
d

end 13 are given beforehend. ) Now the quantities in columis 14 to 18
can be obtained.

To determine, with this, the quanti’oy (-M * N) in columm 25
1t is to be noted that (-M + N) - for the particle originally in
the pipe has the ‘value, perhaps, at point b ang chenges dls-
continuously for the 'particle recently sucked‘ into the gquamtity

(-M +N)1o

On that account the life line i1s drawd, which separates the
particles in the interilor originglly from those particles flowing
in from outside. This Intersects!Mach wave k,. lO at point 11.
Then the following iB ‘obtained: (column’25)

S — [A(aét)u’ll(-M M),

(-M + N)m’-t- 10 ©
s A(&LOt),+ 20

* A(a0£)11 10(‘M.+ Nh‘J

The quentities in columms 26, 27, end 28 may be computed now. As a
result of Inspecting the curve of the boundary condition in -the
au-diegram with the value of u foimd, A 1s obtained (colum 23).
The computation is repeated with the values found in this way.

From points 6 and 10, point 12 is obtained in the manmer
described in section 9. In comnectien with that the difficulty Just
described appears again in finding the average value for (-M + XN).
From 12 and the boundary condition), point 13 may be computed by
the method Just presented.

The Au~dilegramg of the two last examples were kept separate
from the Au~dlagrem drawn for points 1-6 for the sake of clarity.
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If the varlous figures are visualized as being Joinsd ~ the upper
diagrem comnected to'the middle one at the line 6, 5, 3, the middle
one with the lower one at the line 1, k, 6- 1t is recognized that
the plane is covered with several sheets which are cocnnéctoed along
the figures of the characteristics. There is such a superposition,
elrealy, in the lowsr Au-disgrem; there are to be imagined inclosed
the quadrilateral 10, 4, 6, 12 along 10, 4, the triengle 1, %, 10,
along 10, 12 the triangle 10, 3, 12.

In eddition to the boundary conditlons, transitional conditions
can also appear in the interior of the flow. In the example just
discussed Just that would have been the case, if in the outer
space = vwere different fron ;. At the location of such a

discontinuity for = agreement of prezssure and velocity must be
required. To go into such questions with greater detall 1lies
beyond the scope of this report.

14 . TRANSITIONAL CONDITICNS AT COMPRESSION SHOCKS

The flow In a given part of the yt-plame is defined by the
initial and boundary conditione and is calculaeble by the methods
derived up until now. It 1s possible that it might heppen during
ths construction that reglons of the yt-pleme are covered with
phase quentitles several times. This is the sign for the appoar-
ence of compression shockes. The entropy is no longer consbtent
after tho passage of & compression shock. On that account the
computation of ccmpression shocks simultencously includes the

determination of the function s{y) or g-“{,}("}f), too, for the
region of the yt-plane behind the compression shock.

For the mathematical treatment, a compression shock is to be
considered & curve along which two flows collids, which ere rszlated
to one another and to the dircctlon of this curve by trensition-
conditions. It will be the problem of this section to derive
these (known of themselves)” trensition conditions in a convenient
form for the present purpose.

Proceeding from a stationary compression shock, that is from
a compression shock whose front is et rest rslative to the coordinate
Bystem selected, let the index I designate the phese befors the

SC‘otnpza:c'e Ackeret for instenco. Beltrag Gesiynamik in Handbuch
der: Physik, Bd. VII, p. 324 and following pages, Berlin 1927.
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shock, the index II the phase after the shock. The additional
indsex & mnight point out that this concerns the calculation of
a stationary shock. Then the momentum and the energy theorems
as well as the equation of continulty sre wrltten In the form

2 '
pIs * pIvas Pr1s + pIISVIIs2 (432
1 2 - 1 2
1 o+ = =3 __ + & L
Is 218 TTs = 2 ITs (1:30)
= ll- (o]
OIvas pIIsviIs (83 )

Furthermors, the characteristics of the gas concerned must be known,
possgibly in the form

p = p(1, o) (134)

If the quantities in advence of the shock iy, o7g, and vy, are

Inown, then the compression shock is therewith calculable., Actually
all three quantities enter intc the genersl ges laws, hoo, asg
parameters. In order to carry out the computatlon practically, in

such a case, pyp, from (43c) and iIIs from (43b) khave to be expressed

as functions of vy and the known 'uantities and then substituted
in (43a). With that, em account of (h34d), DIIs’ too, is a

function of vIIs and the lmown quantities in advance of the shock.

In thls manner en equation for I1s alone 1s obtained which must

be solved numorically in a suitable mamner. For an ideal gas for
which oy is not constant, equations (43) tremsform with the aid

of (23, as follows:

0
Is PTe -
. RPrq + > vIsE = Ry + vIIse (4ha)
I1s ITs
o 1 2
1(Trg) + %VIB_ = 1(T11g) + 5711 (bkp)
o
Is
VIg = Vorg (khe)

Pr1s
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Since oIs appesrs here only In the combinstion p only

o
ITs’'"Is
TIs end T1g 8till remain as parameters upon which the phases

behind the shock dspend. To calculate the shock curvee numsrically,
it is useful, first to regard Tyy and Tyyg as parameters and

deteranine Vg from this subssqusntly. The computation process is
the following: From (4ha) end (bke) -

RT RT
L= v, (h5e)
Vis VII.

As a result of squering this

o e P

a 2 8 2

o * BRI, vyt = o+ Wy * Vypg (k5b)
Is IIs

Introducing

glves
ViTel = Vgt - 241 (46)
from (4ub).
Putting- this in (45b), the desired equatiom for Ve 18
obtainsd as

-4na? + bRAL(Too - TIS>_ |
\

LEAi -QR(HS - )l +vIB

2 2 .o 2)]. 2
. R <TIIB T1e, )‘l 2RI AL

If VIg 1s determined, then vIIs and pIIs/pIs are computed in
turn with the aid of (46) and (hk4c); finally '

]

0

Pns/ Ple = Prrs/? Ts Trre/1s
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For en i1desl gas with constant specific heats, the following trans-
formations may be uvnderieken. According to the familiar reletions

{ = —£ __RT
k- 1

and
8 = KRT *

Equetions (45a) end (4lb) sre written in the form

2 a
°Is 4+ v I 4 v
kas 1T
2 2 2 2
To T %8s YVIe Tk -1 21Is T VIIs
or
11 Y1s _ 1f B1Is 2 1 Viis (47e)
= + = = + : e
k v /815 81s K\ 81s viIs7aIs 8Ty
2 2 N2 -
2 V1g 2 o118 V118"
<1 + = -1 + “""‘a (Ll-'?'b)
81s \?Is _ Is

By this, ery./ag, end Virg/8y 8nd, with that, the other quantities,

too, depend on the parsmeter vyg/ayg &lone.

X
To compute Vyrg/etg; LfIIs/aIs is eliminated:

. .
k+l(vIIs V118 kzl_§_+f._;_§_+l+k-llr;§\2=o
2 \os 818 \ %18 Vis 2 alg)

is obtained as a result.u



NACA ™ No. 1196 b1

The solutlon of this equation is found, immediately, if it is
borne in mind that on account of the form of (47) & solution is
represented by

viTs/21g = Vg / &1g
then

Ti1s _ 2 /?Is+k-1vls>

, 8r1g k. + lKvIs 2 apg
Using this, the following is obtained from (L7%h)

\2

\..' hY
_.._IE)=1+1<:-1 s € _f T1msV
815 2 [ \°1s ) 818

°rre/Pre = (vIs / aIs)éTs / VIIE)

and

Prrs "’pIs = <°IIS / DIB)'(TIIB/ TIB)

2
VIs/ aIs aIs/ V-IIs ( 8"III'_s/ BIS>

The chenge of entropy is of inierest, as well; with the aid of (27)
end (28), these expressions resvlit

8 -8 T
IIs __Is _ _X__ in _ILs_\ - i Ils
R k-1 T1s 7 P1g
5115 ~ 5Is _ 2k 1n°IIs - 4p YIS 4 3n JII8 - 27 CIIs
R k-1l e o1s 2Ts ®s
2 iy s, g, TIs 4 ogp s
k-1 a

Is 81s 81s
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From this
* 1c21
"rs _( P18 Vs 1
s 81s 81s V118

Arbitrary compression shocks result from the stationery compression
shocks Just calculated because a velocity is superimposed. In doing
go, the thermodynemic phase gquentities before and after the shock
for which e&ccordingly the index s can be omitted are retained amd
moreover the velocity differences. Since the phase in advance of
the shock 1s already glven in the construction of flows, before the
shock is computed, the relative velocitles with respect to the phase
in advance of the shock are formed. Let

1 absolute veloolty of shook front

& relative veloalty of shock front with respect to particles
in advance of shock

Then
M I8, Ay vy ev.o=-_2 (2801
ar ar IT,I IT I k+1\ar Vg

The signs appearing Iin this are not astonishing. A statlonary
compression shock in & gas which moves in the poslitive direction
propagates itself in a mnegative direction relative to the material
ehead of the shock, and in so dolng, produces a change in velocity
in the direction of ite propegation velocity, that is, in the
negative directian, too. Neturally, compressicn shocks, which travel
in the positive directlon in the materlal at rest are also possible,
the slgns of the wvelocities have to be changed for these. The
thermodynemic phase guantities of this are not touched upon. Corre-
sponding to the distinction which had been met in Mach waves, these
lest compression shocks are designated compression shocks of the
first type, those which propagate in the negative direction as
compresalon shocks of the sscond type. In figure 11 the pressure
ratio, for an ideal gas with k = 1.405 <{he propagation velocity of
the compression shock and the changs in entropy (expresse& by
“It/ﬂl) has been presented as & function of the veloclty change
Ay '/ . For compression shocks of the filrst type Au and Av
IT,X II1
are to be taken with positive sign, for compression shocks of ihe
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second type with negative sign. The fundsmental numerical values
appeer in table V. BSuch a dlagrem would have to be used to epnly
the characteristics method in the form given in section 11 in the
computation of compression shocks. How are these relatioms for the
compression shock expressed in terms of A and p? If two
compregsion shocks which only arlse separately from superposition
of a veloclty =~ they are distinguilshed by the indexes o and p -
are represented in a Au-dlagram, that is, i1f the phases in advence
of the shock A o od Ry o )s.m i B and the phases behind the

2 2

shock are plotted, then here, too, the expression must be arrived
at that the thermodynamic pheasses in advance of and behind the
ehock, as well as the velocity dlfferences for 'bo‘bh compression
shocks are the same. Accordingly,

A = A

I,a * ”I,a B + H1g

-;- .=‘ +
MIe ¥ M1r,e = Pop t PoTe

A “p Vv -f{a - = (a - -(r__ -
( I, "If,a) ( I,a ”I,a) ( II,8 “II,B> ( 18 ”’IB)
By subtraction of the first two equations
+ - = - . + -
‘\"II a XI,Q.) (“’n,a “I,a) (’”I_I,B }'IB\ (“IIB “IB>

Rearrangling terrs in the third equation gives
(X { =(n__ =2 S AT
II,q, I N.? 0 I,a IIp I,B) 118 IB

From the last two equations it follows that

A - A = A - A
I, I,a II,B I,B
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thet is, the chenges in A and u in a compressicn shock are main-
tained in the superposition of a velOUity. Accordingly, the shocks
are designated by

11,1 T MIx
end
Myrr =M T M

The following relations hold for idesl gases with comstant specific
beats, according to (42)

2 (&II i W 4
A\ I I M il E S
11,1 T I k l\ao a 2y o
el e (e L)L
ao k-1 aI
G e i‘z)-.‘fzz-l’z
AuII,I-uII u =%k -~ 1 a a a8,
o) =
a k-1
S

aI/a is to be computed from A; and upp by (k2c). TFor the
expressions in curved brackets

Ai-:: -l+

e(f_x_z__l_VII'VI
k-1 8 a
» NI

™
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ere introduced. These quantities, as well as _Au/aI, “II/“I:
and  pry /'pI' devend only on Vg /aI accoriing to relations

previously developed. They are plotted in figures 12(a) and 12(b),
and, admittedly. the upper designations refer to the compression
shocks of the firs* type, and the lower designations to compression
shocks of the second type. Figure 12(b) represents an increased
section of figure 12(a), with the. appropriate numerical values in
table V. ‘ ' '

The following example shows a first application of this diagram.
In a pive of constent cross section there is a qulescent ges of
constant entropy and constant pressure, the sonic velocity is taken
to be ar = ao. Suddenly, a piston is ariven inte the pipe at a

miform spsed of 0.5a0. What 1s the ensuing flow llke? Figure 13

shows the yt-diagrem. - Ths starting peint of the plston motion lies
at the origin of the coordinate system. The 1ife line of ths piston
is shown wlth hatching. A compression shock forms in front of the
piston, which imparts the velocity of the piston to ths particles, so
that the particles bshind the compression shock move with constant -

. velocity. Corresponding to the phase in frcent of the compression
shock is ' :

The veloclty bshind the compression shock is

'\TII = O-5ao
thersfore, -
L5 - po) =
s\ “II) =05
Mpp T =l
From this, on account of )"I =0 and By = o ..
Y - =1

1I,T II,T

Since aI/ac') = 1 this gives



S NACA T4 Wa. 1106

Ag a result of causing this straight line In the Ai.—A{I-diagram
(fig. 12(b)) to intersect the shock curve, the following is obtainsd:

ON = 1'022; AII = 0-022; %% = ll3h~6; ﬂII/'ItI = 00970

I = 0.022; m o= 10324'6

Y11

Fram »py &nd ppr, P is computed by (424), from this by (28)

PII/pI = 1.970

The goal would be reached somewvhat qulcker in this by application of
diagram 11,

15. PRELIMINARY ARGUMENTS IN THE DETERMINATION OF A COMPRESSION

SHOCK IN THE FLOW FIELD

It is the object of thie section +to show first of a1l by what
data a conpression shock in a flow 1s deterinined, end, secondly, to
give a method by which the computation of such a compression shock is
posgible.

.Ae can be readily shown, the veloclty of a compression shock is
larger than the veloclty of a Mach wave In the material. This means,
that the flow field in advence of the conpression shock remsins
maffected by this and cen be computed independent of it. It will be
assumed to be knowvn vhat follows. For the field behind the shock,

a compression shock of the first type represents on the one hand the
start of l1ife linee and Mach waves 2, on the other hand the terminal

of Mach waves 1. It follows, from thls, that the flow behind the

shock and the shock 1teslf are mutually related and can only be
computed together. This is the reason, therefore, that the computation
of the compresslion shocks becomes, essentlally, more complicated

than the computation of other parts of the flow.

Wext will be shown how exemples cen be conceived of flow flelds
with compression, shocks. If in the yt-diagrem (figs. 14(a) and 1h(Dd)
the flow f£ield in front of the compresslion shocks snd the portion CI
of the 1ife line of the compression shock is given, then the phases
behind the shock are also determined. From the slope of the lifs
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line the propagation velocity of the compression shock is given,
namely for each point of CD. Besids, the phases in front of the
shock can be learnsd for the polnts of CD; with this the phases
behind the shock are calculable. From the phases behind the shock,

a portion of the flow fileld behind the shock, nemely the region CED
(fig. 14(a)) may be computed, or if the entropy is known for the life
lines et the lower end of C. The reglon CFD (fig. 14(b)) as well.
Tt is necessary to go forward along the life lines and Msch waves 2,
backwards along Mach waves 1. Imagine in figure 14(a) that the
computed 1ife lins CBE is realized through the motion of a piston,
then there 1s a flow in which a compression shock appears and vhich
gatisfles a boundary condition (if not prescribed, too). In

figure 14(b) it is necessary to imagine anothér flow field adjoined
continuously at the lower end of CF; here the compresslon shock

and the flow determined by it satisfy the condltion that it is
compatible along the Mech wave CF with snother flow.

From these flow flelds the following is recognitzed; the
econpression shock through the portion CE of the life line of the
piston or CF of the Mach wave is defined as far as 1t is reached
by Mach waves of its type (hers the first, therefore) + & change of
the 1life line of the piston outside of CE or the Mach waves :
outside of CF propagates along Mach wave 1 in the yt-diagrem, to
be exect, and neglecting cases in which a second compression shock
erises, attains the compression shock at the upper end of D,
certainliy. On thse other hend & changs brought about between C
end E or betweenn C &and F in the boundary or junction
conditlions tekes effect at that position on the compression shock
where the Mach wave 1 concerned reaches it, that 1s, the portion CD
is certalnly changed.

If tho life line of the piston 1 kmown beyomd E to G or
the Mach wave beyond F +to H, then a further portlon of the flow
Pield is thereby determined, without the necesslity for knowing the
continuation of the compression shock beyond D; 1t concerns the
regions CEGJD or CFHED. '

It will now be shown how to procede fundamentslly +to compute
8 compression shock for specified boundary or Junctlon conditions.
As a concrete example assume the compression shock to be produced
by a piston which experiences a sudden Jump in velocity. (See fig. 15.)
The starting point of the comprossion shock is that peint of the
1life line of the pisten at which the velocity Jump appears. The
phase immedlately behind M can be ascertained immedlately by the
method applisd to the example of the last section. The compression
gshock - as in previous examples of Mach waves - 18 camputed in
individual sections, which are so small that the phase gquantities
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for them may be regarded as varying linesrly. As Just carried out,
the phases behind the compression shock are calculable, if the
velocity of the shock is known. The volocity at M is known.
Along the portion of the compression shock to bo computed, M, N,
the vhase change and, with it, the change in propagation veloclty
of the compreesion shock, too, are regarded as linear. Accordingly,
for ell posslble shocks which satiafy the trensltion conditions,
the portion M, N, of the counpression shock depends only on a
single paraneter, the veloclty change between M and N, 1o be
oxact. As & result of computing the field behind the compression
shock for various values of this perameter, by interpolation, that
ghock nay be ascerteined which ie consistent with the specified
plston movenent. At best, for this N is permitted to travel on &
fixed life line in the field in eadvance of the shock. Iet C be
the point on the life line for which the Mack wave 1 passing
throuvgh N proceeds. Now the region OPGN mey be computed in a
femiligr menner. For the determinstion of the extension of the
compression shock NR +the phase behind the compression shock at
the point N mey bs regarded as given everywheore along the entire
Mach wave NQ.  On the other hand, that value of velocity changes
between N and R . has to be determined by interpolation, which
reletes to a flow field that continuously Joins the known field
along NQ.

With these two types, nemely the computation of & compression
shock going out from & piston or wall and the computation of a
compression shock continuing into or arising in the interilor of the
flow, the most lmportent problems have been mastored thet can appear
hore. The interpolation methods described become preity tedlous;
instead of them, iteration methods will be used, which actually lead
to the goal mors guickly. The interpolation method was mentioned
previously, however, since 1t affords better insight into the basic

raslations.

16. EXAMPLES OF THE COMPUTATION OF COMPRESSICON SHOCKS IN THE

FIOW FIELD

Examples will be given of how the problems formulated in the
preceding section can bs solved by neens of iteration methods. Let
the flow be that couputed in figure 10 and teble IV. As the start
of the nev portion of the compression shock to be computed, point 1
is chosen in every case, accordingly it is idontified with the
point M (fig. 15) once and with the point N & second time. The
" new portion of the compression shock to be computed that corresponds.
to MY or NR, accordingly, is assumed to end én the life line 8, 9
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of figure 10. The phaseg in front of the shock for N or R are
obtained as a result of interpolation along this line. For these
calculations it is necessary, on that accoumt, to have the know-
ledgs of the flow field in front of the shock at the points 1
(M or N) end 8 end 9. In teble VI which has the seme arrangsment
as table IV these velues have been recorded. While it sufficed to
know .2‘;7..‘! for the construction of the flow field, here = itself
ar
must be 1':B:clm\r:n. These gquantities for points 1, 8, and 9 are located
in column 26. In the designations, in these exemples, the only
deviation from figure 15 is that only points on the compression
shock are characterized by letters. Numbers are used for points of
the flow field, corresponding to previous use.

Weo begin with the more elementary problem of continuing a
compression shock in the interior of the flow. For thls the phase
behind the shock at the point N and the pheses along the Mach
wave Nrp,10 (fig. 16(a)) may be considered known. The phases
at NII and at point 10 appear in teble VI, vhases in between are
found by linear interpolation; moreover, for NII the ‘velocity of

the compression shock and = have besn given. (columns 25 end -26) .
Besides %.’-‘- for ths life lines lying below N may be viewed as

computed. It was entered for point 10 in the corresponding column.
If the dlistances between points on the compression shock arse not

chosen too large, it 1s sufficient to regard %3- between them as

as constent. In the following this has happened throughout. Sincse

NII and 10 1lile on a Mach wave, the conelstency condition must

naturally be satisfled.

Tn connection with the flow calculation the existing data are
to be taken from the preceding calculation steps. The real
conputation beginsg with the fact that the &ifference in ¢ from
its value at the starting point of the portion of the compression
shock to be computed (N here) 1is ascertained for the life line
up to vhich the compression shock is to beo computed (8, 9 here).
This computetion is carried through slong the curve of the initial
values in figure 10, the 1life line 8, 9 used here passes through
point 7 thers. By (37)
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By (23) and (L424)

- - 2

———

k-1,
_p_.=1tl+k'l(7\,+p,)
Po . b —

Just as for figure 10, F hes the Form

2
. | F=F0y'b

For point 7T

y = 1.450; &t =1.180; X = 0.66; p = -0.16; =g = 0.849

For N the corresponding values appear in table VI. With this the
following 18 obtained:

\ N -
E 2\ - 2.680; l.;élﬂ_lf..\ = 1.110
Fo Oo 7 o po 8’0)7
F PN L o2.a70; L L T\ -0.93
Fo o Fo Po B
rN }N
PN = 2.425; I 2 -.‘Z-\‘ = 1.020
Fo o Fo P, &,
N, 7 o /uN,7

AW7 X = 2.425 X 0.075 + 1.020 X 0.03 = 0.2122

3
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In figure 10 g.f‘i. had already been given, i1i must be the same us
v .

tha* found from the gquantities Just computed. In fact

- I
T K . 0.049 - 0.230

(df) = 1 =
&WET’N al g 0212

This is the average value of QJ_IE as can he gathered for the
f .

stretch 1.7 from the auxiliary dlagrem in figure 10. After these
proparations, the actual iteration method is reached. To begin
with, the phases at the rpoints RII eand 11 ave estimated, in

that 11 is the interssction point of the Mach wave 1 leading
backwazrds from R wilth the given Mach weve N,10. Since no better
refersnce point existes for the estimate, these phases are equated
to the phase at HII' Moreover, still another estimate is needed

for ad% behind the shock; for this, the same value that prevaills -

at the lower end of N 1s chosen. With these assumptions, the
figure N, R, 11 may be drewn in figure 16(a). Starting with the
life 1line of the compr=ssion shock KR, whose direction hers 1is
the sams &s the direction of the compression shock at N (teble VI),
R is obtained as the inversection point with the 1life line 8, g.
Then *hs Mach vave R,11 is drawn in proceeding from R Dbackwards.
The direction of this Mech wave was teken in the familisr manner
fron a Mi-diagram (not given here). From this figure he position
of R in advance of the shock is leermsd bty interpolation along
N,10 the phase a+ 11l. (See teble VI.) Fron this may bs obtailned
the values entered further on in the respective lines whilch are
necsssary for later conputation. Proceeding from }”II by means

of the congistency conditions, the quantity )”RII is computed for
ithe Mach vave (11,R;;). For this the initlal estimates for the

phase In Ry; are taken as a basis and then columns 6 to 13, 17,
15, 16 and 18 to 20 computed. For )"RII so cbtained the '

properties of the compression shock ars teken from the shock
diegren 12(b). The following computations are _essential to this

=K "X =0u ll- '
R = .

o, = Bhprr 1 /(a_BI/a,o) = 0.954/1.040 = 0,918
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From the shock diagram

. X
Mip = 0.0130;5 “RIIAFRI = 0.978; R =1.307

! SRI
From thils it 1s computed that
AER
= 0.0135; = = 0.830; —& = 1,360
A&RII,I 373 Tprr et a 3
= - . H = + = .
Porr 0.090; gR/aO VRI/aO _AMR/aO 1.661

‘A portion of these results ars given in teble VI (columns 24 to 26).
Morsover

i - .
RIT ~ "NIT - 0.830 - 0.781 _ 0.230
A.,‘p‘ _ 0.2122

an .
as
R,N

To Inprove these values, let a second iteration step be carried out.
First, the figure N,R,11 has to bs drawn again for the values
Just obtainsd. The average direction of the compression shock 1s

i p S(u + ) = 1.733

Then Ry
congistency condition for ths Mach wave ll’RII'

end 11 are obtained by interpolation, KRII from the

To find the characteristics of the shock, 1t is necsessary to
carry oul the following computation -

M = l-ll‘ 6 ~ Ooll' = Ot 6 M ”-. = 0.
RI1, T 5 93 = 0.963; sy = 0.927
From tho shock diagrem
- ao
My = 0,0130; “RII/“RI = 0.930; _ﬂz = 1,310

From this ig obtained

u = -0.087; = =0.828; w___fa =1.657; & =o0.220
R,IT * ORIz ' Trrrf o 4

£
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An sdditlonal iteration step 1s not necessary any more. In the
second example (fig. 16(b)) the cowpression shock is produced by
the sudden velocity change of a plston. The point of the yt-diagram
at which this velocity Jump takes place ~ let it be designated M
in agreement with figure 15 - is to coincide with point 1 of
figure 10. From the point M the piston has the velocity corre-
spoinding to the 1life line in the field in front of the shock, in
varticular the velocity at M in front of the vslocity Jump is
0.425a,. At M the velocity changes, suddenly, to the value

M. = 0.9258, &and rises until the instent &a,t = 1.3 to the
IT
nagnitude 0.975&0. "This snd the flow field as detérmined by the

Initial condltions and the piston motion un to the point M is given.
Next the phase behind the shock at the point M is computed.

.
ML (1.) - { X = 0.500
M,I

% %o \Fony, 11

CTMTET _ 0.483

%(N'C - Am) = 0.483

As a result of this line in the shock diagram 12(b) intersecting
the shock curve, the following 1s obtained

AN = 0.986; AL = 0.020

Ty, 11/™MT = 0.977; 49U = 1.333

amr
From thils
. H =~ .22
)\'M,II = 1.620; My, 11 0.229
YUy
- = . * — lg8
“M,II 0.781; a 05
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The vhase at M;r is known with that.’ (table VI.) Now the

d4ifference must be computed, over again, from the life line of
the piston for the life line up to which it is desired tu compute
the couprossion shock. If 1s desired to allow. the compression
shock to end at the life line 8, 9, here too and take the phases
in 8 and 9 (teble VI) from the preceding éxample and
= = 0.2122

Bl = My = 05
The computation of the compression shock makes use of figure M,S,
N, 11. (See fig. 16(b)). M, S, § 1ipg the life line of the compression
ghock; N, 11  is the Mach wave 1 returning from N; 11, S is the
Mech wave 2 returming from 11. To begin, an estimete of the phase

at the points NII’ 11 and SII'-is made and this is chosen egual
' drt

everywhers to the phase at MiI' In addition, an estimate for Eﬁ

[

is necegsary. Let E@lz 0.230 as a start. Figure M, N, 11, S

may be drewn with these assumed values. The order in which the
polnts were nemed corresponds to the ordexr in which they cams up

in the drawing. For the positicns of N end 11 obtained thersby
the phase in front of the shock (see table VI)} or the velocity of
the life line is obtainsd by interpolation. The itsration method
begins at point 11 and it cen be showm that Hqq cen be only

glightly different from uSI because the line slemont SII’ll is
small relative to the other gimensions. The quantlty HSII can
differ from MMII only slightly, since it originates in linecar

intierpolation between M and N, and N 1iles very close to M.
Therefore Hig = By 17 is chosen a8 a starting pointv. If the
)

veloclty of the piston at 11 that is known from the boundary
conditions is used for this xll may be computed. From the

conslstency condition for the Mach wave 11,N XNII is obtained.

Now the following computation
Mgrr, = 1017 Dy = 0.988

and from the shock diagram

) e v— D AUN —
Ay = 0.020; “NII/#NI = 0.973; Eﬁf = 1.334
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fron thie

-0.077; T = 0.827; = 1.678

“N,II =

o |
)

Further it 1s calculated that

&t - 0,217
&y

The phase at S 1s obtalned by interpoletion betwesn M and N.
With the ald of the comslstency condition for the Mach wave S,11,uqy

is fineclly obtained, and Ay from the boundery conditlon for

point 11l. The first lteration step cnds with that. It is necessary
to check whether the quantities Aqq, Hy7, )‘NII’ MNTTs WIT»

and % computed agree sufficiently with the originel estimates.

To Increase the accuracy & second iteration step might be
carried out. On the basis of the values Just coumputed, the figure
is redesigned end the cosputation is carried out in the manner Just
describsd. The wvalus for Hqq Just computed 1s teksn as a beginning.

The following calculetion is obtainsd for the determination of the
characteristics of ths shock

AA = 1.003; AL = 0.967
NII,T ! ¥

From the shock diegrem

- ; [\_uN
! ’ I

fromn this

- . . N . dn _
Werr = 0.083; T = 0.828; 53-1.678, 31-17 0.221

The computation is continued in the menmer given until the phase
at point 11 is obtained, again. An additional iteretion stsp l1s
not necessary.
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17, SUMMARY

The differential equation system for nonstationary, one-
dinensional flows possesses three families of characteristics; the
thermodynamic end the flow phase are described by three varlables.
As & result of setting up consistency conditions for the charac-
teristics passing through the point for which the condltions have
been set up, three equatlions are obtalned from which the phase
mey be obtained. JFn that a possibility for the computation of the
flow has been glven fundementally.: The report carries out these
idess, in generel, and brings the simplifications which are possible
undsr special assumptions, as well as detalled exsmples. Compression
shocks appear, in this, as transitionel conditions in the interior
of the flow and are. likewlse investigated In detall.

Translated by Pave Feingold
National Advisory Committee
for Aeronautics _ -
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TAELE V

NQYSTATIONARY COMPRESSIGN SHOCKS (K = 1.405)
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Figure 1.~
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Curvilinear coordinate system ¢ , 7.
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Figure 2a.- Relation between i and T for COs.
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Figure 11.- Characteristics of compression shocks K = 1,400.
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Figure 12a.- Characteristics of compression shocks K = 1.400.
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96TT °*ON WL YOVN




NACA ™ No., 1196

b 4

“ Path line of a particle ;

Figure 13,

7



T8

Figure 143,

NACA TM No. 1196




NACA TM No. 1196

Figure 15.

79



NACA TM No. 1196

VvV
1,5 p
R
14 ;
N 11 —ol0
12 13

Figure 16a.



NACA T No. 1196 . 81

4

1,5- p
N
8
10

=

| St

M

13 a.t

12 3

Figure 16b."



